Stabilizing lithium metal using ionic liquids for long-lived batteries
نویسندگان
چکیده
Suppressing dendrite formation at lithium metal anodes during cycling is critical for the implementation of future lithium metal-based battery technology. Here we report that it can be achieved via the facile process of immersing the electrodes in ionic liquid electrolytes for a period of time before battery assembly. This creates a durable and lithium ion-permeable solid-electrolyte interphase that allows safe charge-discharge cycling of commercially applicable Li|electrolyte|LiFePO4 batteries for 1,000 cycles with Coulombic efficiencies >99.5%. The tailored solid-electrolyte interphase is prepared using a variety of electrolytes based on the N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide room temperature ionic liquid containing lithium salts. The formation is both time- and lithium salt-dependant, showing dynamic morphology changes, which when optimized prevent dendrite formation and consumption of electrolyte during cycling. This work illustrates that a simple, effective and industrially applicable lithium metal pretreatment process results in a commercially viable cycle life for a lithium metal battery.
منابع مشابه
Ionic Liquid Electrolytes for Li–Air Batteries: Lithium Metal Cycling
In this work, the electrochemical stability and lithium plating/stripping performance of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) are reported, by investigating the behavior of Li metal electrodes in symmetrical Li/electrolyte/Li cells. Electrochemical impedance spectroscopy measurements and galvanostatic cycling at different temperatures are performed to ana...
متن کاملProspects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries
Ionic liquids (ILs) and deep eutectic solvents (DESs) have been applied in various fields such as electrolytes for lithium ion batteries, electrodeposition, electropolishing and even in fuel cells. ILs and molten salts have found some applications in redox flow batteries (RFBs) in the past and recently some metal ion based ILs have been proposed and used by Sandia National Laboratories. In addi...
متن کاملThermally-responsive, nonflammable phosphonium ionic liquid electrolytes for lithium metal batteries: operating at 100 degrees celsius† †Electronic supplementary information (ESI) available: Detailed ionic liquids synthesis, characterization, conductivity, cyclic voltammetry, battery cycling and those of other compositions; SEM images; energy density calculation. See DOI: 10.1039/c5sc01518a Click here for additional data file.
Thermally-responsive, Nonflammable Phosphonium Ionic Liquid Electrolytes for Lithium Metal Batteries: Operating at 100 Degrees Celsius Xinrong Lina, Reza Kavianb, Yi-Chun Lub, Qichao Hub, Yang Shao-Hornb, and Mark W. Grinstaff*a aDepartments of Chemistry and Biomedical Engineering, Boston University, Boston, MA 02215. bDepartment of Materials Science and Engineering, Massachusetts Institute of ...
متن کاملDensity Functional Theory Based Study of the Electron Transfer Reaction at the Lithium Metal Anode in a Lithium–Air Battery with Ionic Liquid Electrolytes
Room temperature ionic liquids, which have unique properties such as a relatively wide electrochemical stability window and negligible vapor pressure, are promising candidates as electrolytes for developing lithium−air batteries with enhanced performance. The local current density, a crucial parameter in determining the performance of lithium−air batteries, is directly proportional to the rate ...
متن کاملElectrochemical Model for Ionic Liquid Electrolytes in Lithium Batteries
Room temperature ionic liquids are considered as potential electrolytes for high performance and safe lithium batteries due to their very low vapor pressure and relatively wide electrochemical and thermal stability windows. Unlike organic electrolytes, ionic liquid electrolytes are molten salts at room temperature with dissociated cations and anions. These dissociated ions interfere with the tr...
متن کامل